

Far-Field Propagation of Airburst Events Using a Cartesian Method

Michael J. Aftosmis

Applied Modeling and Simulation Branch

NASA Advanced Supercomputing Division

NASA Ames Research Center

7-9 July, 2015

1st International Workshop on Potentially Hazardous Asteroids Characterization, Atmospheric Entry and Risk Assessment

Acknowledgements

NASA Advanced Supercomputing Division – Task 3 & 4 teams

Marian Nemec
Jonathan Chiew

Chris Mattenberger

Lorien Wheeler

Donovan Mathias

George Anderson

Darrel Robertson

Entry Systems Division – Task 2 team

Dinesh Prabhu

Ethiraj Venkatapathy

New York University

Marsha Berger

ARC Planetary Defense IPT

Ground & Water Effects

- "Task 3" of the PD IPT
- Focus on ground effects modeling
 - Airburst & atmospheric propagation
 - Surface overpressure & wind prediction
 - Ground damage
 - Tsunami propagation
- Inputs come from entry and airburst modeling in Task 2
- Outputs of atmospheric propagation feed tsunami modeling
- Outputs of atmospheric & tsunami modeling feed physics-based risk models in Task 4

ARC Planetary Defense IPT

Goal of atmospheric propagation is prediction of surface footprint

- Far-field atmospheric propagation drives
 - Ground footprint and land damage prediction
 - Atmospheric forcing for tsunami modeling
- Focus
 - Perform detailed reconstruction of specific events
 - Perform parametric studies to develop surface footprint models for PRA
 - Goal is to do thousands of such simulations need to control computational expense

Current work focuses on airburst only, no ground impact

Overview

Report current status of effort and connection with PRA and tsunami

- Modeling tools & solver
- Verification & Validation
 - Basic
 - Chelyabinsk Case Study
- Investigations of ground-footprint sensitivity
 - Line-source vs time-dependent entry
 - Entry Angle
- Upcoming Efforts

Overview

Inve

Report current status of effort and connection with PRA and tsunami

Modeling tools & solver

VeriAtmosphere modelGoverning equations

Solver and simulation methodology

Model for deposition of mass, momentum & energy

Upcoming Efforts

Modeling

Inviscid scale-height atmosphere model

- Atmosphere model based on 1976 Standard Atmosphere (ISO 2533:1975)
- Isothermal approximation for scale-height description

$$P(z) = P_{\circ}e^{-z/H}$$

$$\rho(z) = \frac{P(z)}{RT}$$

• Use H = 8, and initialize simulations with atmosphere in hydrostatic equilibrium

Isothermal Pressure (kN/m²) 50 100 150 90 Temperature (K) 80 70 Geometric Altitude (km) 20 10 0 200 300K 100 Temperature (K)

Modeling

Inviscid scale-height atmosphere model

- Atmosphere model based on 1976 Standard Atmosphere (ISO 2533:1975)
- Isothermal approximation for scale-height description

$$P(z) = P_{\circ}e^{-z/H}$$

$$\rho(z) = \frac{P(z)}{RT}$$

• Use H = 8, and initialize simulations with atmosphere in hydrostatic equilibrium

Modeling

Inviscid scale-height atmosphe

- Atmosphere model based on 1976 Standard Atmosphere (ISO 2533:1975)
- Isothermal approximation for scale-height description

$$P(z) = P_{\circ}e^{-z/H}$$

$$\rho(z) = \frac{P(z)}{RT}$$

• Use H = 8, and initialize simulations with atmosphere in hydrostatic equilibrium

Inviscid scale-height atmosphere model in hydrostatic equilibrium

 Use 3D Euler eqs. in strong conservation law form, including body force due to gravity

$$\frac{d}{dt} \int_{\Omega} U \, dV + \oint_{\partial \Omega} (\mathbf{F} \cdot \hat{n}) \, dS = \int_{\Omega} S \, dV$$

The state vector of conserved variables is

$$U = (\rho, \rho u, \rho v, \rho w, \rho E)^T$$

Flux density tensor and gravitational body force term are

$$\mathbf{F} = \begin{pmatrix} \rho u & \rho v & \rho w \\ \rho u^2 + p & \rho uv & \rho uw \\ \rho uv & \rho v^2 + p & \rho vw \\ \rho uw & \rho vw & \rho w^2 + p \\ u(\rho E + p) & v(\rho E + p) & w(\rho E + p) \end{pmatrix} \qquad S = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -\rho g \\ -\rho wg \end{pmatrix}$$

Solver: Cart3D Overview

Production solver based on cut-cell Cartesian mesh method

- Original development 1998-2002
- Fully-automated mesh generation for complex geometry
- Unstructured Cartesian cells
- Fully-conservative finite-volume method
- Multigrid accelerated 2nd-order upwind scheme
- Excellent scalability through domain decomposition
- Broad use throughout NASA, US Government and industry
 - Over 500 users in aerospace community
 - One of NASAs most heavily used production solvers, large validation database

Solver: Cart3D Overview

Production solver based on cut-cell Carti

- Original development 1998-2002
- Fully-automated mesh generation from watertight geometry
- Unstructured Cartesian cells
- Fully-conservative finite-volume method
- Multigrid accelerated 2nd-order upwind scheme
- Excellent scalability through domain decomposition
- Broad use throughout NASA, US Government and industry
 - Over 500 users in aerospace community
 - One of NASAs most heavily used production solvers, large validation database

Goal is accurate prediction of surface effects from energy deposition inputs

- Focus on ground footprint, not near-field physics
- Abstract entry physics as simply sources of mass, momentum & energy
- Drive simulations via deposition profile taken from:
 - Models (e.g. ReVelle, Ceplecha, H&G, Shuvalov)
 - Simulations (Task 2, CTH, ALE3D, Shuvalov, Boslough)
 - Light-curve derived profiles (Jenniskins, Popova)
 - Infrasound based energy deposition (Brown, ReVelle)
- Need to derive source terms from deposition profiles

Derive source terms through conservation analysis

- Release energy, mass and momentum into a corridor of known radius, $m{r}$
- Over each time step, Δt , the meteor travels a distance d
- Given: energy deposition profile as a function of altitude
 - From modeling
 - From simulation
 - From observational data

Conservation of energy

 Given energy deposition we know the total energy released is area under profile

$$E_{tot} = \int \frac{dE}{dh} \, dh \quad \text{(+ radiation)}$$

Conservation of energy

 Given energy deposition we know the total energy released is area under profile

$$E_{tot} = \int \frac{dE}{dh} dh$$
 (+ radiation)

• For known entry angle, can rescale profile to be energy released along trajectory, \boldsymbol{x}

$$E_{tot} = \int \frac{dE}{dx} \, dx$$

Conservation of energy

 Given energy deposition we know the total energy released is area under profile

$$E_{tot} = \int \frac{dE}{dh} dh$$
 (+ radiation)

• For known entry angle, can rescale profile to be energy released along trajectory, \boldsymbol{x}

$$E_{tot} = \int \frac{dE}{dx} \, dx$$

• This energy gets released into the mesh cells which intersect the tube surrounding the meteor at each time step, Δt

Conservation of energy

 Given energy deposition we know the total energy released is area under profile

$$E_{tot} = \int \frac{dE}{dh} dh$$
 (+ radiation)

• For known entry angle, can rescale profile to be energy released along trajectory, \boldsymbol{x}

$$E_{tot} = \int \frac{dE}{dx} \, dx$$

Conservation of energy

 Given energy deposition we know the total energy released is area under profile

$$E_{tot} = \int \frac{dE}{dh} dh$$
 (+ radiation)

• For known entry angle, can rescale profile to be energy released along trajectory, \boldsymbol{x}

$$E_{tot} = \int \frac{dE}{dx} \, dx$$

 Since work = (force x distance), and aerodynamic drag is doing all the work, this profile is identically drag along the trajectory

$$E_{tot} = \int \frac{dE}{dx} \, dx = \int D(x) \, dx$$

Conservation of mass & momentum

- Mass loss equation $\frac{dM}{dt} = -\sigma C_D S_m \frac{1}{2} \rho_{\rm air} U_m^3$
- Recall that aerodynamic drag is

$$D = C_D S_m q_\infty$$
 with $q_\infty = \frac{1}{2} \rho_{\rm air} U_m^2$

- So mass loss is simply $\frac{dM}{dt} = -\sigma D U_m$

Conservation of mass & momentum

- Mass loss equation $\frac{dM}{dt} = -\sigma C_D S_m \frac{1}{2} \rho_{\rm air} U_m^3$
- Recall that aerodynamic drag is

$$D = C_D S_m q_{\infty} \quad \text{with} \quad q_{\infty} = \frac{1}{2} \rho_{\text{air}} U_m^2$$

- So mass loss is simply $\frac{dM}{dt} = -\sigma D U_m$

Conservation of mass & momentum

- Mass loss equation $\frac{dM}{dt} = -\sigma C_D S_m \frac{1}{2} \rho_{\rm air} U_m^3$
- Recall that aerodynamic drag is

$$D = C_D S_m q_{\infty} \quad \text{with} \quad q_{\infty} = \frac{1}{2} \rho_{\text{air}} U_m^2$$

• Assuming constant U_m and σ , local deposition of mass scales directly with Drag

Conservation of mass & momentum

- Mass loss equation $\frac{dM}{dt} = -\sigma C_D S_m \frac{1}{2} \rho_{\rm air} U_m^3$
- Recall that aerodynamic drag is

$$D = C_D S_m q_{\infty} \quad \text{with} \quad q_{\infty} = \frac{1}{2} \rho_{\text{air}} U_m^2$$

- So mass loss is simply $\frac{dM}{dt} = -\sigma D U_m$
- Assuming constant U_m and σ , local deposition of mass scales directly with Drag
- Area under profile is total mass deposited $(M_{\text{entry}} M_{\text{GroundFragments}})$
- From mass deposition and velocity, we also know momentum deposition

Overview

Report current status of effort and connection with PRA and tsunami

- Modeling tools & solver
- Verification & Validation
 - Basic Spherical charge examples
 - Chelyabinsk Case Study
- Investigations of ground-footprint sensitivity
 - Line-source vs time-dependent entry
 - Entry Angle
- Upcoming Efforts

Blast from a spherical charge

- Static spherical charge with
 - No buoyancy
 - $E_{tot} = 520 \text{ kt}$,
 - Initial radius, $r_i = 1 \text{km}$
- Classical refs.
 - Brode, H. L., Blast wave from a spherical charge, J. Phys. Fluids. (1959)
 - D. L. Jones. Intermediate strength blast wave. Physics of Fluids (1968)

Blast from a spherical charge

• $E_{tot} = 520$ kt, Initial radius, $r_i = 1$ km, no buoyancy

Space-time overpressure evolution

Blasts over ground plane

- Numerous examples static and moving blasts over ground plane with buoyancy
 - Static airburst with buoyancy

Moving airburst

Blasts over ground plane

Numerous examples static and moving blasts over ground plane with buoyancy

Spherical airburst

Simple shock reflection

Mach stem formation

Blasts over ground plane

- Numerous examples static and moving blasts over ground plane with buoyancy
 - Static airburst with buoyancy

Moving airburst

Blasts over ground plane

Numerous examples static and moving blasts over ground plane with buoyancy

Blasts over ground plane

Numerous examples static and moving blasts over ground plane with buoyancy

Blasts over ground plane

- Numerous examples static and moving blasts over ground plane with buoyancy
 - Static airburst with buoyancy

Moving airburst

Blasts over ground plane

Validation: Chelyabinsk Meteor

February 15, 2013

- 12,500 metric tons, 19.8 m diameter
- Trajectory:
 - 18.6 km/sec, (~Mach 61.7)
 - 18° entry angle
- Data
 - Ground Damage (glass breakage data)
 - Shock arrival times
 - Light curve reconstruction
 - Energy deposition from infrasound measurements

Very well studied event, simulations of virtually all aspects of entry, breakup, analysis of composition, blast propagation, ground damage, etc.

Validation: Chelyabinsk Meteor

February 15, 2013

- 12,500 metric tons, 19.8 m diameter
- Trajectory:
 - 18.6 km/sec, (~Mach 61.7)
 - 18° entry angle
- Data
 - Ground Damage (glass breakage data)
 - Shock arrival times
 - Light curve reconstruction
 - Energy deposition from infrasound measurements
- Primary references used
 - Popova & Jenniskens et al., Science Express, November 2013
 - Brown et al., Nature, November 2013
 - Chelyabinsk Airburst Consortium, + various other media

Validation: Chelyabinsk Meteor

Simulation Details

- Energy deposition:
 - $E_{tot} = (520 \text{kt} 5\% \text{ radiation})$
 - Profile from Brown et al. Nature 2013
- Net mass deposited:
 - $m_{tot} = 12.5e6 \text{ kg}$
- Trajectory:
 - 18.6 km/sec, (~Mach 61.7) @ 18° angle
 - Peak brightness @ 29.5 km
 - ~110 km length, 60→24 km altitude
 - Assume constant velocity
- 3D simulation with ~90M cells
 - Resolution of ~20 m along trajectory
 & ~100 m resolution near ground
 - Simulation covers ~300 sec. of real time

Ground footprint

- Goal is prediction of pressure & velocity on the ground
- Blast first contacts ground at t = ~82.7 sec elapsed time (~78 sec. after peak brightness)
 - Excellent agreement with earliest data on blast arrival time data (76 – 90 sec) (Popova et al.)

Ground footprint evolution

Ground footprint evolution

Peak Ground Overpressures

Peak Ground Overpressures

100 80 60 1% 40 Y-Distance (km) 20 -40 -60

-20

X-Distance (km)

-40

-60

-80

-80

-100

80

Overpressure

Contours (1%)

40

60

Glass Damage Data Comparison

Peak Ground Overpressures

- Glass damage data collected by the Chelyabinsk Airburst Consortium
- Statistical correlation (Mannan & Lees) show 700 Pa (0.69%) shatters ~5% of typical windows, 6% overpressure breaks roughly 90%.
- Footprint similar to those in Popova et al. (ScienceExpress)
- Breakage data estimate overpressure at chelyabinsk ~2-4% (P. Brown)

Shock Arrival Time

Shock Arrival Time

- Peak brightness at ~4 sec. elapsed time
- First arrival at ~78 sec after peak brightness,
- Predict ~90 sec (from peak brightness) at Korkino and Yemanzhelinsk
- Arrival in vicinity of Chelyabinsk at 140-145 seconds
- Neglected local wind, temperature and other effects of the real atmosphere
- Overall very good agreement with data & best predictions in literature

Overview

Report current status of effort and connection with PRA and tsunami

- Modeling & Solver
- Verification & Validation
 - Basic
 - Chelyabinsk Case Study
- Investigations of ground-footprint sensitivity
 - Line-source vs time-dependent entry
 - Entry Angle
- Upcoming Efforts

Overview

Report current status of effort and connection with PRA and tsunami

- Modeling & Solver
- Verification & Validation
 - Basic
 - Chelyabinsk Case Study
- Investigations of ground-footprint sensitivity
 - Sensitivity to entry modeling
 - Time-dependent compared to simple line source
 - Entry angle / Spherical charge investigation

Time-Dependent modeling vs simple line source

- Entry only lasts for seconds, blast propagates for minutes
 - Detailed entry modeling requires very fine time-scales ($\Delta t \approx$ 1.e-4)
 - Cost: 90M cell simulation: (1000 cores x 8-12 hrs) Under 1% of NAS Pleiades
 - Line Source for mass, momentum and energy can reduce cost by 50%
- When is line source modeling appropriate?

Seconds after entry

Seconds after entry

Ground Footprint

- Some differences in highest overpressures (~1%) at earliest arrival time
- Closer agreements at later time
- Good agreement for location of peak ground pressure
- Good agreement of arrival time from peak brightness
- Geometry dictates that low-entry trajectories will show most discrepancy

How good is a static spherical charge model?

- Very cheap spherical charge models exist.
- Various handbook methods for damage estimation use spherical charge data
- Can these be used in risk assessment?
 - Where are these appropriate?
 - Perform quantitative assessment
- Investigate ground footprint
 - Accuracy of overpressure
 - Extent/strength of footprint
 - Details of impulse of blast on ground

How good is a static spherical charge model?

Height (km)

$$t = 10 sec$$

$$t = 19.6 sec$$

$$t = 44.5 sec$$

$$t = 118 \sec$$

Ground footprint comparison

- Very similar envelopes modulo details of energy deposition profile chosen.
- Both show lower peak overpressure than 18° trajectory

Ground footprint comparison

 Detailed pressure impulse shows similar instantaneous profiles as blast evolves

 Blast arrival times agree to within 2-3 seconds

Envelope of Max and Min Ground Pressures

Ground footprint comparison

 Detailed pressure impulse shows similar instantaneous profiles as blast evolves

Envelope of Max and Min Ground Pressures

 Blast arrival times agree to within 2-3 seconds

53

Summary

Atmospheric propagation and ground effects modeling

- Outlined modeling for far-field propagation of airburst events using a Cartesian finitevolume method
- Showed basic verification and validation
 - Good prediction for model problems
 - Good prediction of footprint and arrival time data for Chelyabinsk meteor
- Showed envelopes and time-evolution of ground footprints for damage prediction and atmospheric-driven tsunami simulations
- Preliminary sensitivity investigations
 - Line source vs full time-dependent entry
 - Effects of Entry angle & comparison with specific spherical blast

Full paper for modeling and V&V planned at AIAA SciTech 2016 in San Diego (Jan 2016)

Atmospheric propagation and ground effects modeling

- Parametric drivers
 - Vary entry angle, size and strength of asteroid
 - Parametric modification of energy deposition curve
 - Precompute parametric studies -- feed results to PRA
- Cratering & splashing
- Terrain and structures
 - Refine particular when scenario arises (e.g. PDC 15)
- Update models being output to Physics-Based Risk Analysis
- Update models being input from entry and breakup modeling

Thank You!

NASA Advanced Supercomputing Division – Task 3 & 4 teams

Marian Nemec
Jonathan Chiew
Chris Mattenberger
Lorien Wheeler

Donovan Mathias George Anderson Darrel Robertson

Entry Systems Division – Task 2 team

Dinesh Prabhu Ethiraj Venkatapathy

New York University

Marsha Berger

NASA PD IPT

James Arnold Craig Burkhard Jessie Dotson David Morrison

Derek Sears

IPT Seminar Speakers

Peter Jenniskens Peter Brown
Olga Popova Jay Melosh

Paul Chodas

NASA NEO Office

Lindley Johnson

